Data Science langfristig erfolgreich operationalisieren


Michael Henninger | Leiter Data Science Weiterbildung | Hochschule für Technik FHNW12.10.2021

Die Operationalisierung von Data Science wird leider häufig vernachlässigt, obwohl diese von zentraler Bedeutung ist. Das neue CAS Data Engineering der FHNW vermittelt das dafür nötige Wissen praxisorientiert.

Ein gutes Modell für die Vorhersage ist nur die halbe Miete
Die Vorstellung ist äusserst verlockend: Mit Hilfe von künstlicher Intelligenz kristallisieren sich automatisch und kostengünstig betriebswirtschaftlich relevante Erkenntnisse aus den bestehenden Daten heraus, die dann gewinnbringend eingesetzt werden können. Die Nachfrage nach Data Science Knowhow ist riesig; ebenso die Masse an verfügbaren Kursen. Viele dieser Kurse verfolgen das Ziel, für gegebene Anwendungsfälle die besten Vorhersagen zu treffen. Ein Modell, das gute Vorhersagen macht, ist jedoch nur die halbe Miete.

Operationalisierung von Data Science
Ein häufig vernachlässigter Aspekt ist, dass diese Modelle für die Vorhersagen operativ betrieben und somit in die bestehende Infrastruktur eingebunden werden müssen. Bevor dazu Entscheidungen bezüglich Umsetzungen und Technologien getroffen werden, müssen die Anforderungen an die Infrastruktur und die Applikation wie auch rechtliche und betriebliche Rahmenbedingungen berücksichtigt werden. Im Normalfall wird eine permanente Verfügbarkeit der Modelle erwartet, um Ausfälle der Dienstleistungen zu vermeiden. Ein redundanter Betrieb ermöglicht dies, und weiter auch, verschiedene Modelle in der Praxis einander gegenüberzustellen oder ein neues Modell unterbruchsfrei einzubinden. Neben dieser Redundanz ist auch die Überwachung der Daten, Vorhersagen und Infrastruktur ein wichtiger Bestandteil. Die Vorhersagequalität eines einmalig trainierten Modells wird schlechter, wenn sich die Datenlage über die Zeit ändert. Dashboards und Deskriptive Statistik helfen dabei, die Eigenschaften der Daten zu überwachen und das Verständnis für die Daten zu schärfen. Um neue Modelle zu trainieren oder weitere betriebsrelevante Erkenntnisse aus den Daten zu gewinnen, ist es von Vorteil, wenn die Daten einfach verfügbar abgespeichert sind. Bei einer zentralisierten Daten-Infrastruktur gelangen die Daten von verschiedenen Datenquellen in die zentrale Datenbank oder das Data Warehouse. Zudem ermöglicht eine hoch verfügbare Daten-Infrastruktur die Echtzeit-Verarbeitung von Daten und kommt auch mit grossen Datenmengen spielend zurecht. Um Probleme frühzeitig zu erkennen, ist ein gutes Monitoring der kompletten Infrastruktur unerlässlich.

CAS Data Engineering
Die FHNW bietet mit ihrem Weiterbildungslehrgang CAS Data Engineering die Möglichkeit, sich das Wissen für die Operationalisierung von Data Science und den Aufbau und Betrieb einer Daten-Infrastruktur praxisorientiert anzueignen. Das konzeptionelle Verständnis und die praktische Anwendung stehen dabei im Zentrum. Der Grossteil der Dozierenden dieses Weiterbildungslehrgangs kommt aus der Privatwirtschaft und beschäftigt sich täglich intensiv mit Daten-Infrastrukturen und Data Science. Dies ermöglicht, dass der Unterricht nicht nur reine Wissensvermittlung beinhaltet, sondern auch spannende Einblicke in verschiedene Praxisanwendungen und Diskussionen zu individuellen Anwendungsfällen bietet.

Data Science Weiterbildung
Das Institut für Data Science der FHNW setzt seit vielen Jahren Data Science-Projekte zusammen mit Partnern aus der Industrie und Wissenschaft erfolgreich um. Um der steigenden Nachfrage nach Data Science Weiterbildungsmöglichkeiten gerecht zu werden, wurde das Angebot in den letzten Jahren stark ausgebaut. Neben dem CAS Data Engineering werden noch weitere Data Science Weiterbildungslehrgänge angeboten:

  • CAS Data Science: Der CAS Data Science liefert einen breiten Überblick über verschiedene Data Science-Methoden und vermittelt anhand von praktischen Anwendungsfällen, wie diese eingesetzt werden können, um gewinnbringende Erkenntnisse aus Daten zu gewinnen.
  • DAS Data Product Engineering: Der DAS Data Product Engineering besteht aus dem CAS Data Science und dem CAS Data Engineering und hat somit ein klar definiertes Profil: Absolvierende sind in der Lage, Data Science Anwendungsfälle zu identifizieren, umzusetzen und in den produktiven Betrieb zu integrieren.
  • DAS & MAS Data Science: Tiefreichende Data Science Weiterbildung, die zu einem grossen Teil im Rahmen der Fachvertiefungsmodule individuell zusammengestellt werden kann und mit einer Abschlussarbeit komplettiert wird, um insgesamt den individuellen Mehrwert der Weiterbildung zu maximieren.

Die oben aufgeführte Abbildung 1 liefert eine Übersicht, wie die Weiterbildungslehrgänge zusammenhängen und aufgebaut sind. Bei den Fachvertiefungsmodulen handelt es sich um Module im Umfang von 1.5 – 3 ECTS, die sich intensiv mit einem Thema befassen.

Weiterführende Informationen
Um mehr Informationen zu unserer Data Science Weiterbildung zu erhalten, haben Sie folgende Möglichkeiten:

  • Informieren Sie sich auf unserer Webseite über die Data Science Weiterbildungsangebote der FHNW.
  • Kontaktieren Sie die Studiengangleitung für einen persönlichen Austausch oder zur Klärung von Fragen.
  • Besuchen Sie eine unserer Info-Veranstaltungen.

Kommentar erfassen

Kommentare (0)

Meistgelesen